MBAGeeks Forum

CAT2025

2 months ago

Advanced P&C Concepts

Body

Derangements (Wrong Arrangements)

  • Number of ways to arrangeΒ n objects so that none is in its original position.

  • Formula: !n = n! (1βˆ’1/1! + 1/2! βˆ’1/3! +β‹―+(βˆ’1)^n/n!)

ExampleΒ - 3 letters A, B, C in envelopes. None should go to its original envelope.
Calculation- !3 = 3!(1 βˆ’ 1+ 0.5 βˆ’ 0.1667)=2

  • CAT Shortcut:Β Memorize small n derangements (!1=0, !2=1, !3=2, !4=9) and approximate large n by !n β‰ˆ n!/e.

"If you have 4 letters and 4 envelopes, how would you approach it mentally - formula or approximation?"

Partition / Stars & Bars Formula

  • DivideΒ n identical itemsΒ amongΒ r distinct groups.

  • Formula:

NumberΒ ofΒ ways = ( n + rβˆ’1)
Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  r - 1

ExampleΒ - 10 identical candies into 4 boxes
Calculation - (10+4βˆ’1) = (13) = 286
Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β 4βˆ’1Β  Β  Β  Β  Β  Β  3

  • CAT Shortcut:Β If at least one candy per box, subtract empty cases (Total βˆ’ Bad) instead of recalculating.

"If one box must have at least 3 candies, how would you adjust the calculation?"

Expected Value / Profit & Loss in Probability Games

Expected value (E)Β = Weighted average of outcomes:

E(X) = βˆ‘(Value Γ— Probability)

Example -Β Game costs β‚Ή10. Roll a die: win β‚Ή50 on a 6, nothing otherwise.
Calculation - E = (1/6Γ—50) - 10 β‰ˆβˆ’1.67

  • CAT Shortcut:Β Directly multiply probability Γ— gain βˆ’ cost β†’ avoids lengthy calculation.

"If the game cost changes to β‚Ή5, how does expected value affect your decision?"

Circular Arrangements

  • nΒ peopleΒ aroundΒ aΒ circle=(nβˆ’1)!

  • Applicable whenΒ direction mattersΒ (e.g., people at a table).

Restrictions / Symmetry:

  • Multiply byΒ internal arrangementsΒ for items that must stay together.

  • Divide by 2Β onlyΒ for objects without distinct orientation (e.g., beads on a necklace where clockwise = anticlockwise).

Example – 2 Together:Β 6 friends, 2 must always sit together:
Calculation - treat the pair asΒ a single unitΒ β†’ now 5 units around the circle β†’ (5βˆ’1)! = 4!
Internal arrangementΒ of the pair β†’ 2!Β Total arrangements:Β 4! Γ— 2! = 48

CAT Shortcut:

  • FixΒ one personΒ to reduce symmetry confusion; fundamental reason why formula is (nβˆ’1)!

2 Friends Must Not Sit Together (Logic):

  • Strategy:Β Total βˆ’ Bad

    • Total arrangements: (6βˆ’1)! = 120

    • Bad arrangements (2 together): 48

    • Valid arrangements = Total βˆ’ Bad = 120 βˆ’ 48 = 72

"If 3 friends cannot sit together, how would you extend the Total βˆ’ Bad approach?"

Multinomial Coefficient / Repeated Elements

  • ArrangingΒ n objects with repeats: n!/n1!n2!…nk!

ExampleΒ - β€œSUCCESS” β†’ 7! / (3! Γ— 2! Γ— 1! Γ— 1!) = 420 ways

  • CAT Shortcut:Β Cancel factorials early to save time.

"If one additional letter S is added, how does the arrangement formula change?"

Create custom feed

Make private

Communities (Select a community to add to your custom feed).